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Partial least squares regression (PLSR) models able to predict some of the wine aroma nuances
from its chemical composition have been developed. The aromatic sensory characteristics of 57
Spanish aged red wines were determined by 51 experts from the wine industry. The individual
descriptions given by the experts were recorded, and the frequency with which a sensory term was
used to define a given wine was taken as a measurement of its intensity. The aromatic chemical
composition of the wines was determined by already published gas chromatography (GC)-flame
ionization detector and GC-mass spectrometry methods. In the whole, 69 odorants were analyzed.
Both matrixes, the sensory and chemical data, were simplified by grouping and rearranging correlated
sensory terms or chemical compounds and by the exclusion of secondary aroma terms or of weak
aroma chemicals. Finally, models were developed for 18 sensory terms and 27 chemicals or groups
of chemicals. Satisfactory models, explaining more than 45% of the original variance, could be found
for nine of the most important sensory terms (wood-vanillin-cinnamon, animal-leather-phenolic, toasted-
coffee, old wood-reduction, vegetal-pepper, raisin-flowery, sweet-candy-cacao, fruity, and berry fruit).
For this set of terms, the correlation coefficients between the measured and predicted Y (determined
by cross-validation) ranged from 0.62 to 0.81. Models confirmed the existence of complex multivariate
relationships between chemicals and odors. In general, pleasant descriptors were positively correlated
to chemicals with pleasant aroma, such as vanillin, â damascenone, or (E)-â-methyl-γ-octalactone,
and negatively correlated to compounds showing less favorable odor properties, such as 4-ethyl and
vinyl phenols, 3-(methylthio)-1-propanol, or phenylacetaldehyde.
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INTRODUCTION

One of the final aims of flavor chemistry is to create
mathematical models that allow the establishment of the existing
relationship between the content of the product in aroma-active
compounds and the sensory properties, mainly aromatic, of the
aforementioned product. In the case of wine, this aim is difficult
to achieve for several reasons. First, the number of odorants
that can be found in a wine in concentrations above the threshold
not only is relatively big (up to 50) (1-4) but also the
quantitative analysis of some of these components is extremely
complicated and expensive (1, 5), which impedes the analysis
of a large number of samples. Second, in many complex wines,
there are no impact compounds that determine the aroma. On
the contrary, the aroma is due to the mixture of different
odorants (6-9). The study of these systems requires a statistical
approximation. Finally, the measurement of the sensory at-
tributes of wines is not exempt of difficulties either, especially
when working with wide groups of wines with very complex

aromas (10), which is the case of the aged red wines approached
in the present study. These reasons explain why it is possible
to find, in the literature, studies that penetrate the chemical base
of aroma, abandoning any statistical approximation and using
a limited sensory analysis (1, 4), works that concentrate on the
study of the role of just one or a small group of odorants (11-
16), or statistical studies in which the sensory descriptors are
explained by means of data on volatile components whose
aromatic contribution has not been previously verified (9, 17-
19).

The strategy followed in the present study lies halfway
between the limits defined above. Our aim is to build up models
correlating a matrix of sensory data,Y, with one of chemical
data, X, guaranteeing that the number of cases studied is
sufficient to produce robust and reliable models. Furthermore,
the matrixX will only contain data on chemical components
that are, or can be, aromatically active in the wines. The
modeling technique used here has been partial least squares
regression (PLSR), which offers several advantages over the
classic regression techniques, as well as over other multivariate
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techniques used to correlate sets of sensory and chemical data
(20). This technique has been previously used in the modeling
of the aroma of wines of the variety Traminer (18), in the
measurement of the influence of the de-alcoholization in the
aroma of the wine (21), in the study of the relationship between
the sensory descriptors and hydrolyzed compounds of extracts
of precursors (22), and in a study to determine volatile
components related to the sensory changes observed in Char-
donnay wines stored at high temperatures (9).

The sensory analysis performed here has been partially
inspired by the methodology developed by McCloskey et al.
(17, 23), having used panels of judges formed entirely by
enologists involved in the production of the wines to study. This
election facilitates the later communication of the results to this
group of professionals and allows, a priori, the difficulties
derived from a sensory evaluation of samples of very complex
aroma to be overcome.

The group of wines to study constitutes a more or less
homogeneous category of high quality products. These are red
wines aged between one and five (or more) years in oak cask,
and at least two more in the bottle, produced in prestigious wine-
making areas of the North and North-East of Spain. The aroma
of these wines has a common component due to the cask aging
and a much more diverse part in which different aromatic notes
can be recognized. The olfactometric profile of four of these
wines has been recently studied (7, 8), so that most of the
odorants are known. The experimental design used here assumes
several simplificationssnot to take into account the interaction
of the aromas with the elements of the matrixsand limitationss
not all the aromatically active components have been quantifieds
but we think that some of the conclusions of this study will be
of interest to enologists and to flavor chemists.

MATERIALS AND METHODS

Wines. 57 Spanish red aged wines from 7 different Spanish
Denominations of Origin: Campo de Borja (7 samples), Cariñena (7
samples), Navarra (9 samples), Penedés (10 samples), Ribera del Duero
(9 samples), Rioja (10 samples) and Somontano (5 samples). The wines
were selected by experts from each of the Denominations as the most
valuable and representative of the region (Table 5).

Reagents.SolVents. Dichloromethane was purchased from Fischer
(Leicester, UK), absolute ethanol was from Panreac (Barcelona, Spain),
methanol was from Merck (Darmstadt, Germany), and water was
purified in a milliQ system from Millipore (Bedford, MA).

Resins. Lichrolut EN cartridges were supplied by Merck (Darmstadt,
Germany).

Standards. Compounds numbered inTable 1 as1-3, 6, 7, 10, 12,
15, 17-19,21, 27, 28, 30, 34, 36, 38, 45, 48, 49, 52, 55-57,59, 60,
62,63, and65-69were supplied by Aldrich (Steinheim, Germany);4
was supplied by Merck (Darmstadt, Germany);5, 9, 26, 40, and47
were supplied by ChemService (West Chester, USA);8, 13, 22, 23,
25,29,32,35,41-44,46,51, and58 were supplied by Fluka (Buchs,
Switzerland);11,50, and53were supplied by Sigma (St. Louis, USA);
14, 16, 20, and24 were supplied by PolyScience (Niles, USA);31,
37, 39, 54, 61, and64were supplied by Lancaster (Strasbourg, France);
and33 was supplied by Firmenich (Geneva, Switzerland).

Quantitative Analysis and Selection of the Main Odorants.
QuantitatiVe Analysis of Major Compounds. The analysis was carried
out by the method published by Ortega et al. (24). In this analysis, 4.5
g of (NH4)2SO4, 3 mL of wine, 7 mL of water, 0.2 mL of dichlo-
romethane, and an internal standard were added to a 15 mL screw-
capped centrifuge tube; the tube was first shaken and then centrifuged
at 2500 rpm for 10 min. Once the phases were separated, the
dichloromethane phase was recovered and injected into a Hewlett-
Packard 5890 series II gas chromatograph under the following
conditions: The initial temperature was 40°C, held for 5 min and then
raised at 3°C/min to 200°C. The carrier gas was H2 at 3 mL/min.

Three microliters was injected in split mode. Split flow was 30 mL/
min. The column (50 m× 0.32 mm and 0.5µm film thickness) was a
DB-20 from J&W Scientific (Folsom, CA) and detection was by flame
ionization detector (FID).

QuantitatiVe Analysis of Minor and Trace Compounds.The analysis
was carried out by the method published by Lopez et al. (25). The
cartridges were previously conditioned with dichloromethane, methanol,
and water/ethanol (12%). After this, 50 mL of wine were passed through
a 200 mg SPE cartridge of Lichrolut EN resins at about 2 mL/min.
The sorbent was then dried by letting air pass through it. Analytes were
recovered by elution with 1.3 mL of dichloromethane. The extract was
spiked with the internal standard solution and injected into a 3400CX
gas chromatograph fitted to a Saturn 4 electronic impact ion trap mass
spectrometer from Varian. The oven initial temperature was set at 40
°C, held for 5 min, and then raised at 2°C/min to 230°C. The carrier
gas was helium at 1 mL/min. ThreeµL of extract were injected into a
SPI injector from Varian, whose temperature was set initially at 30°C
for 0.6 min and then was raised to 230°C at 200°C/min. The column
(60 m× 0.25 mm and 0.5µm film thickness) was a DB-WAXetr from
J&W Scientific (Folsom, CA). Calibration graphs were prepared for
69 compounds by the analysis of synthetic samples containing known
amounts of odorants.

Sensory Analysis and Selection of the Wine Descriptors.Sensory
Analysis.The sensory panel, formed by 51 judges, was actually divided
into 5 local committees (Ribera Duero, Rioja, Navarra, Aragón, and
Cataluña). Each committee was formed by 8 to 12 professional
enologists, all of them involved in the production of wines similar to
those of the experiment and with a long experience as wine tasters.
Each committee analyzed a complete set of the 57 wine samples, having
at hand a second bottle to replace spoiled samples. The tasting took
place in four sessions of about 1 h in two different days. The tasting
sessions were conducted in tasting rooms with isolated booths, following
the usual practices in wine tasting, and were conducted by a member
of the research group. An incomplete block design was used, with each
judge given a different subset of the 57 wines. During each session, 9
different wines and a replicate were given to the judges. Therefore,
each judge tasted up to 36 different samples and 4 replicates. The whole
experiment was carefully randomized to ensure that all wines were
tasted by approximately the same number of judges. Judges were
previously informed of the goals of the experiment and were asked to
note down the main aromatic descriptors that best defined in their
opinion the aroma of the wine. The tasting was not limited to orthonasal
aroma evaluation. Judges were asked to proceed following the standard
wine tasting procedures (visual inspection, aroma evaluation, in-mouth
evaluation, retro-nasal aroma evaluation, and evaluation of aftertaste).
To keep to minimum bottle variation, all the bottles used in the study
belonged, strictly, to the same batch and were stored in the same place
under the same conditions. Before analysis, (chemical or sensorial) the
bottle was tasted to search for possible off-flavors and was rejected if
some abnormal odor appeared.

Selection of the Wine Descriptors.All the descriptions given by the
judges were pooled down into a database. Nondescriptive or abstract
terms were directly eliminated, and obvious synonyms were grouped
together. After this, terms used less than 30 times were eliminated,
except if they defined, specifically, a given wine (minimum frequency
arbitrarily set at 4). The performance of the judges was evaluated by
the study of the replicate samples. Judges with a mismatch in the terms
used higher than 50% were eliminated. The similarity of the terms was
studied by cluster analysis using different correlation coefficients
(Pearson’s, Kendall’s, and Spearman’s) as similarity measures. In all
cases, a sequential agglomerative hierarchical nested cluster analysis
(SAHN) was carried out. Complete linkage and un-weighted pair-group
(UPGMA) clustering methods were studied using SPSS (SPSS Inc.,
Chicago, IL) and NTSYS (Exeter Software, Setauket, NY). Correlated
terms defining similar, or at least not very dissimilar, aromas were
clustered together if the regression model for the global term was better
than any of the models for the single terms.

Modeling Sensorial Descriptors from Analytical Composition by
PLSR Analysis.PLSR analysis was performed with UNSCRAMBLER
7.5 (Camo, Asa, Norway). The following strategy was used in the model
building: A first initial model was built for a given descriptor using
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all X variables. After this, the existence of outliers was checked, and
samples with a clear deviation from the model were eliminated and

kept out from the calibration process (up to a maximum of 5). The
model was then recalculated. An iterative process was then begun, to

Table 1. Concentrationsa (µg/L), Olfaction Thresholds (µg/L), and Odor Activity Values (OAV)

compounds threshold avg concd (RSD) avg OAV max OAV

1 acetaldehyde 500b 45 900 (23.4) 91.8 153
2 2.3-butanodione 100b 1250.(63.3) 12.5 33.9
3 ethyl butyrate 20.0b 386 (36.9) 19.3 55.9
4 2-methylpropanol 40 000b 84 800 (40.4) 2.12 5.75
5 3-methylbutyl acetate 30.0b 437 (32.3) 14.6 28.3
6 1-butanol 150 000c 1730 (62.9) <1 <1
7 3-methylbutanol 40 000b 248 000 (32.3) 6.20 11.8
8 ethyl hexanoate 14.0b 425 (30.2) 30.4 59.3
9 hexyl acetate 1500c 97.1 (65.6) <1 <1
10 3-hydroxy-2-butanone 150 000b 54 900 (87.5) <1 1.69
11 1-hexanol 8000b 3500 (24.4) <1 <1
12 (Z)-3-hexenol 400b 347 (58.9) 0.87 2.60
13 ethyl octanoate 5.00b 196 (25.3) 39.2 69.7
14 propanoic acid 8100c 4160 (71.3) <1 1.47
15 2-methylpropanoic acid 2300b 3510 (34.1) 1.53 3.34
16 butyric acid 173b 2020 (37.7) 11.7 25.9
17 γ-butyrolactone 50 000g 36 100 (54.6) <1 <1
18 3-methylbutyric acid 33.4b 1810 (28.9) 54.2 105
19 3-(methylthio)-1-propanol 1000b 3660 (41.1) 3.66 10.8
20 hexanoic acid 420b 2820 (27.7) 6.71 13.9
21 benzyl alcohol 200 000f 654 (165) <1 <1
22 2-phenylethanol 14 000b 58 800 (40.7) 4.20 11.9
23 octanoic acid 500b 2500 (26.1) 5.00 9.94
24 decanoic acid 1000b 671 (52.4) <1 2.00
25 ethyl decanoate 200b 18.7 (20.4) <1 <1
26 phenylethyl acetate 250d 21.9 (51.1) <1 <1
27 2-methoxyphenol 9.50d 5.80 (37.7) <1 1.40
28 (E)-â-methyl-γ-octalactone 67.0d 211 (52.9) 3.15 7.73
29 furfuryl alcohol 1410g 57.3 (122) <1 <1
30 γ-nonalactone 30.0d 11.4 (33.4) <1 <1
31 2-methoxy-4-vinylphenol 1100d 66.7 (77.9) <1 <1
32 furfural 14 100b 44.2 (56.3) <1 <1
33 â-damascenone 0.05d 1.50 (40.2) 29.6 67.7
34 ethyl isobutyrate 15.0b 211 (47.5) 14.1 41.1
35 ethyl 2-methylbutyrate 18.0d 14.9 (50.9) <1 2.08
36 1-(4-hydroxy-3-methoxyphenyl)ethanone 1000d 66.8 (44.2) <1 <1
37 ethyl vanillate 990d 158 (40.9) <1 <1
38 vanillin 200d 58.7 (55.3) <1 <1
39 methyl vanillate 3000d 17.5 (59.5) <1 <1
40 isobutyl acetate 1600b 35.7 (42.2) <1 <1
41 ethyl isovalerate 3.00b 43.1 (51.8) 14.4 45.9
42 butyl acetate 1880d 3.10 (42.0) <1 <1
43 5-methylfurfural 20 000d 14.8 (124) <1 <1
44 ethyl furoate 16 000b 12.1 (45.9) <1 <1
45 methyl benzoate 30.0e 0.40(30.1) <1 <1
46 2-methylbutyric acid 2520g 204 (45.4) <1 <1
47 R-terpineol 250d 11.7 (51.8) <1 <1
48 linalool 25.0d 3.70 (51.6) <1 <1
49 citronelool 100c 2.10 (62.3) <1 <1
50 R-ionone 2.60b 0.10 (120) <1 <1
51 ethyl dihydrocinnamate 1.60d 0.80 (46.2) <1 1.69
52 (Z)-â-methyl-γ-octalactone 790b 53.7 (49.9) <1 <1
53 â-ionone 0.09d 0.40 (129) 4.44 21.7
54 4-ethylguaiacol 33.0d 76.5 (105) 2.30 12.7
55 m-cresol 68.0b 1.90 (53.0) <1 <1
56 2-methoxy-4-propylphenol 10.0f 2.60 (99.0) <1 1.31
57 (E)-ethyl cinnamate 1.10d 1.30 (65.6) 1.10 5.60
58 γ-decalactone 88.0b 6.00 (46.4) <1 <1
59 4-allyl-2-methoxyphenol 6.00d 28.5 (54.8) 4.80 12.2
60 4-ethylphenol 440d 436 (131) 1.00 8.40
61 δ-decalactone 386b 12.5 (41.5) <1 <1
62 2,6-dimethoxyphenol 570d 31.0 (31.4) <1 <1
63 2-methoxy-4-propenylphenol 6.00f 3.40 (60.6) <1 2.00
64 4-vinylphenol 180d 35.2 (65.5) <1 <1
65 4-allyl-2,6-dimethoxyphenol 1200g 12.3 (41.2) <1 <1
66 phenylacetic acid 1000g 59.4 (54.6) <1 <1
67 4-hydroxy-3,5-dimethoxybenzaldehyde >50 000g 10.5 (137) <1 <1
68 o-cresol 31.0d 2.20 (35.4) <1 <1
69 phenylacetaldehyde 5.00b 4.70 (68.9) <1 2.60

a Standard deviation below 10% for all cases with the exception of 4-vinylphenol (17%), furfuryl alcohol (30%), and vanillin (11%). b Thresholds from ref 2. c Thresholds
from ref 34. d Thresholds from ref 25. e Thresholds from ref 7. f Calculated in the laboratory. g Database of L. J. van Gemert.
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reduce the number ofX variables in the model, searching for the
simplest model with the best prediction ability. Afull crossValidation
was carried out to estimate the prediction ability of the models for
new sets of samples. The parameters studied to evaluate the prediction
ability were the RMSEP (root mean square prediction error); the
percentage of variance explained by the model, %EV; the correlation
coefficient between real and predictedY variables, CC; the slope of
the regression curve between real and predictedY variables,m; and
the offset of the regression curve between real and predictedYvariables.

RESULTS AND DISCUSSION
Quantitative Analysis and Reduction of theX Variables.

A summary of the results from the quantitative analysis of the
57 wines can be seen inTable 1. The table gives the mean
concentration and its relative standard deviation (RSD), and the
mean and maximum number of odor units reached in the set of
wines for each of the 69 quantified odorants. Thirty-four
compounds out of the 69 were found at concentrations above
its threshold in at least one wine. Most of the other 35
compounds not reaching the threshold were not considered in
further stages of the analysis. There are several exceptions to
this rule, however. Vanillin and several related compounds were
kept for the model-building steps, because despite not reaching

the calculated threshold, there are some reasons to think that
these compounds can play some role. First, there are at least
four compounds with similar aromas that may have some
additive and/or synergic effect (vanillin, ethyl vanillate, methyl
vanillate, and 1-(4-hydroxy-3-methoxyphenyl)ethanone). Sec-
ond, some odor thresholds reported in the literature are far lower
than those reported inTable 1 (26).

To reduce further the number of components that must take
part in the models, a cluster study was performed using different
correlation coefficients in order to locate those variables that
maintain a high degree of correlation in the data set. In some
cases, it was possible to identify the existence of groups of
highly correlated components, because they share the same
biochemical origin, and moreover, they show sensory properties
relatively similar as a consequence of their similar chemical
structures. In these cases, a new variable was built by linear
combination of these correlated components. The weight of each
component in the new variable was obtained from its corre-
sponding threshold value (combined variable) compound1/
odor threshold of C1 + compoundn/odor threshold of Cn). The
new combined variables were the following:

Table 2. Basic Statistic Parameters of the 18 Sensory Descriptors (Data are Given as %)

mean max min SD I50
a asymmetry kurtosis no. of zeros

wood-vanillin-cinnamon (1) 46 82 15 17 25 0.3 −0.7 0
total fruits (2) 37 67 7 16 23 −0.3 −0.9 0
animal-leather-phenolic (3) 30 87 0 21 35 0.7 0.0 4
toasted-coffee (4) 24 69 0 15 15 1.0* 1.4 3
balsamic-licorice (5) 22 50 0 12 17 0.2 −0.2 3
spicy (6) 21 47 0 13 21 0.3 −1.1 3
berry-fruit (7) 21 47 0 10 14 0.2 −0.5 1
ripe-fruit-lactone-jam (8) 20 45 0 12 17 0.0 −0.8 5
old-wood-reduction (9) 19 67 0 17 20 1.3b 1.4 6
vegetal-pepper (10) 14 44 0 11 16 0.6 −0.3 11
raisin-flowery (11) 14 53 0 12 13 1.6b 2.7b 4
chemical (12) 13 60 0 11 9 2.1b 5.9b 6
sweet-candy-cacao (13) 13 38 0 10 13 0.9 0.4 8
lactic (14) 11 40 0 9 12 0.9 0.9 9
alcoholic (15) 10 50 0 9 7 1.9b 6.2b 13
tobacco-herbaceous (16) 7 35 0 7 12 1.4b 3.0b 17
smoky (17) 6 20 0 6 7 0.9 0.4 21
dried fruits (18) 5 30 0 7 7 1.8b 3.7b 27

a Range interquartiles. b Significantly different from the normal distribution.

Table 3. Quality Parameters of the PLSR Models Built for the 18 Wine Descriptors

descriptors %EVa RMSEPb mc offsetd CCe no. Xf no. PCg

wood-vanillin-cinnamon (1) 53.2 2.28 0.55 4.04 0.72 10 2
total fruits (2) 46.4 2.40 0.45 4.41 0.67 10 1
animal-leather-phenolic (3) 62.1 2.72 0.63 2.24 0.79 10 2
toasted-coffee (4) 70.7 1.73 0.68 1.50 0.77 14 5
balsamic-licorice (5) 40.1 1.73 0.40 2.61 0.62 8 2
spicy (6) 29.2 1.83 0.36 2.95 0.54 8 3
berry-fruit (7) 48.2 1.95 0.52 2.21 0.68 7 2
ripe fruit-lactone-jam (8) 38.4 1.88 0.37 2.79 0.60 8 1
old-wood-reduction (9) 55.6 2.40 0.57 1.82 0.73 6 2
vegetal-pepper (10) 59.6 1.44 0.57 1.20 0.76 4 2
raisin-flowery (11) 66.3 1.20 0.70 0.79 0.81 8 3
chemical (12) 5.2 1.27 0.07 1.99 0.20 6 1
sweet-candy-cacao (13) 54.6 1.34 0.56 1.09 0.73 13 3
lactic (14) 16.0 1.67 0.17 2.07 0.37 6 1
alcoholic (15) 18.7 1.40 0.22 1.40 0.40 6 2
tobacco-herbaceous (16) 30.9 1.10 0.30 0.87 0.53 6 1
smoky (17) 33.5 0.97 0.30 0.77 0.52 6 1
dried fruits (18) 11.4 0.81 0.12 0.64 0.31 6 1

a Percentage of variance explained by the model. b Root-mean-square prediction error. c Slope of the regression curve between real and predicted Y variables. d Offset
of the regression curve between real and predicted Y variables. e Correlation coefficient between real and predicted Y variables. f Number of X variables in the model.
g Number of principal components in the model.
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Group 1 (cinnamates): (E)-ethyl cinnamate+ ethyl dihy-
drocinnamate

Group 2 (fatty acids): hexanoic acid+ octanoic acid
Group 3 (ethyl esters of fatty acids): ethyl butyrate+ ethyl

hexanoate+ ethyl octanoate
Group 4 (ethyl esters of isoacids): ethyl isovalerate+ ethyl

2-methylbutyrate+ ethyl isobutyrate
Group 5 (fusel alcohols): 3-methylbutanol+ 2-methylpro-

panol
Group 6 (isoacids): 2-methylpropanoic acid+ 3-methylbu-

tyric acid
After these operations, the number of components or groups

of components considered in the building of the models was
27, listed inTable 4.

Sensory Analysis and Reduction of the Wine Descriptorss
Y Variables. The number of terms used by a judge to define a
wine was between 1 and 12, with 3 being the most frequent. In
80% of the cases, between 2 and 5 terms were used. This
number of descriptors can be considered to be normal in this
type of study (27).

The total number of citations (excluding the hedonist and
nondescriptive terms) compiled in the sensory experiment was
of 3777, and the total number of descriptors used by the judges
was above one hundred. As it was done in the case of the
chemical components, this number was reduced, seeking to
eliminate hardly relevant or badly defined terms and combining
highly correlated terms or those with very nearby meanings. In
a first stage, those terms which were obvious synonymous were
grouped. After this, all the terms mentioned in less than 30
occasions, and moreover which had not been used in a particular
wine more than 3 times, were eliminated.

Once the descriptors had been defined, the reproducibility
of the judges was studied by means of the replicates performed
in the tasting. Of the 51 judges, 5 were eliminated. After this
operation, the number of terms considered in the study was of
3091 distributed among 33 descriptors. This number of descrip-

tors was still considered excessively high for statistical purposes;
therefore, we studied the existence of correlations among them
and the possibility of using terms grouping two or three
descriptors.

The cluster study using different correlation coefficients as
measurement of similarity emphasized the existence of highly
correlated terms. In most cases, this correlation was supported
by an obvious aromatic proximity, as, for example, the terms
animal and leather or (oak) wood, vanilla, and cinnamon. In
other cases, the aromatic proximity is more questionable, as
that between flowery and raisin, or that between old wood and
reduction. Nevertheless, it was decided to group such terms in
the statistical processing, because a clear improvement is
obtained in the results when proceeding in this manner. This is
due to the fact that the most general terms achieve a higher
number of citations, so that the frequency distributions become
more similar to the normal distribution. This is coherent with
observations by other authors about the utility of using nonex-
cessively specific terms (10, 23, 28). The descriptors finally
considered are the 18 shown inTable 2.

The terms in this table are arranged by the average frequency
of citation per wine. The table can be seen to be divided in two
halves. The first nine terms are those most frequently used to
define these wines, with average frequencies of citation higher
than 19%. Conversely, all nine terms of the lowest part of the
table are much more rarely used, with average frequencies of
citation below 15%. The first terms are therefore essential in
the definition of such wines, whereas the last ones are secondary,
even though they can define some subset of the original group.
Data from this table also indicate that the scores of most of the
descriptors are distributed in an approximately normal form,
though in the cases 4, 9, 11, 12, 15, 16, and 18, the distribution
is distinctly slanted, being rather normal-log.

Modeling Sensorial Descriptors from Analytical Composi-
tion. Models were built based on the algorithm PLS1 for all 18
descriptors indicated inTable 2. PLS1 algorithm was used

Table 4. Regression Coefficients of the Odorants Included in the Study with the Models Explaining More than 45% of the Original Variance

compounds D1a D2 D3 D4 D7 D9 D10 D11 D13

acetaldehyde −0.672 0.426
2,3-butanodione 1.101 0.386
3-methylbutyl acetate −0.481 1.016
3-hydroxy-2-butanone 0.388 −0.601 0.660 0.427
(Z)-3-hexenol −0.723 0.839 0.630 −1.10
butyric acid −0.668
3-(methylthio)-1-propanol 0.798 0.851 −1.357 −0.388
2-phenylethanol −0.246
2-methoxyphenol 0.576 2.501 −0.861
(Z)-â-methyl-γ-octalactone 0.989 −0.474 0.341
â-damascenone 0.594 −0.760 1.008 0.345
vanillin 0.889 0.257 −1.032 −1.139 −1.682
methyl vanillate 0.419 −0.300 0.827 −0.895 0.296
â-ionone 0.394 0.684 0.366 0.692 0.414
4-ethylguaiacol −0.633 −0.457 1.229 −0.473
2-methoxy-4-propylphenol 0.768 −0.522
4-allyl-2-methoxyphenol 0.782
4-ethylphenol −0.744 −0.533 1.519 −0.536 −0.584
2-methoxy-4-propenylphenol 0.173 0.880 0.534 −1.150 −0.184 0.418
phenylacetaldehyde −0.537 −0.544 −0.480 −0.510 3.119 −0.705
group 1
group 2 −0.701
group 3
group 4 −1.231 0.755 0.918 0.331
group 5 −1.282 −0.592 0.766
group 6 0.660
ethyl vanillate 0.567 −1.005 0.257

a The number is the code for the descriptor as shown in Table 3.
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because PLS2 algorithm results were not satisfactory and
difficult to interpret. Different transformations of the chemical
and sensory data were tested to avoid the problems derived from
the lack of normality observed in some cases. Nevertheless, the
best results were obtained by direct correlation between the
frequency of citation of an odorant and the chemical data without
any transformation further than a centering and an auto scaling.
The best models obtained following the strategy delineated in
the methods section are shown inTables 3and4. Table 3shows
the basic statistical data of the models, andTable 4 shows the
correlation coefficients of the different variables.

Data in Table 3 show that some models are capable of

explaining a high percentage of the original variance. In the
caseswood-Vanillin-cinnamon, animal-leather-phenolic, toasted-
coffee, old-wood-reduction, Vegetal-pepper, raisin-flowery, and
sweet-candy-cacao, the percentage of initial variance explained
by the validated model was higher than 50%. In the opposite
case stood the models obtained for the descriptorschemical,
lactic, alcoholic, and dried fruits, which did not manage to
explain more than 20% of the initial variance. Fortunately, these
descriptors belong to the group of secondary descriptors for this
type of wines, as was stated previously. The low efficiency of
these models can be attributed as much to the difficulty of
modeling variables containing a high number of zeros as to the

Table 5. Wines Analyzed in the Experiment

wine vintage year denomination of origin grape variety* alcohol %(v/v)

Federico 1992 Ribera Duero na 13.0
Hacienda Monasterio 1992 Ribera Duero na 12.5
Monte Ducay 1993 Cariñena T, G, CS 12.5
Mas Comtal 1993 Penedés Me, CF 13.0
Viña Ainzon 1994 Borja G, T 13.0
Marques de Tosos 1994 Cariñena T, G, Ca 12.5
Señorio del Aguila 1994 Cariñena G, T, CS 12.5
Jean Leon 1994 Penedés CS 13.5
Borsao 1995 Borja G, T, CS 13.0
Coto hayas 1995 Borja G, T, CS 13.5
Señor Atares 1995 Borja G, T, CS 13.0
Torrelongares 1995 Cariñena G, T 13.0
Lan 1995 Rioja na 13.0
Borsao 1996 Borja G, T, CS 13.0
Coto Hayas 1996 Borja G, T 13.0
Gran Campelles 1996 Borja G, T, CS 13.0
Monte Ducay 1996 Cariñena G, T, Ca 12.5
Señorio del Aguila 1996 Cariñena G, T, CS 12.5
Castillo de Monjardin 1996 Navarra T, CS, Me 13.0
Evena 1996 Navarra T, CS 13.0
Gran Feudo 1996 Navarra G, T, CS 12.5
Gran Feudo 1996 Navarra T, CS 12.5
Gran Irache 1996 Navarra na 12.5
Montecristo 1996 Navarra T, CS, Ma 12.5
Nekeas 1996 Navarra T, CS, Me 13.0
Palacio de la Vega 1996 Navarra T, CS 13.0
Palacio de Otazu 1996 Navarra T, Me, CS 13.0
Cavas Hill 1996 Penedés CS 12.5
Jané Ventura 1996 Penedés CS 13.0
Mas d'Aranyó 1996 Penedés T 12.5
Naveran 1996 Penedés CS 12.5
Emilio Moro 1996 Ribera Duero T 13.0
Pago Capellanes 1996 Ribera Duero T, CS 13.5
Viña Mayor 1996 Ribera Duero T 13.0
Alta Rio 1996 Rioja T 12.5
Coto de Imaz 1996 Rioja T 12.5
Longrande 1996 Rioja na 13.0
Marqués de Vargas 1996 Rioja na 14.0
Muga 1996 Rioja na 13.0
Murua 1996 Rioja na 13.5
Puerta Vieja 1996 Rioja na 12.5
Viña Albina 1996 Rioja na 13.0
Gran Vos 1996 Somontano na 13.5
Can Feixes 1997 Penedés na 13.0
Dehesa de los Canonigos 1997 Ribera Duero na 13.0
Emilio Moro 1997 Ribera Duero T 13.0
Pago de los Capellanes 1997 Ribera Duero na 13.0
Viña Pedrosa 1997 Ribera Duero na 13.0
Viñas de Gain 1997 Rioja T 13.0
Enate 1997 Somontano T, CS 13.0
Señorio de Lazán 1997 Somontano T, CS, Mo 13.0
Marques de Ballestar 1998 Cariñena G, T 13.0
Albet i Noya 1998 Penedés S 13.0
Augustus 1998 Penedés CF 12.5
Coronas 1998 Penedés na 13.0
Duque de Azara 1998 Somontano T, CS, Me 13.5
Montesierra 1998 Somontano T, CS, Mo 13.0

a Ca, Carignan; CF, Cabernet Franc; CS, Cabernet Sauvignon; G, Grenache; Ma, Mazuelo; Me, Merlot; Mo, Moristel; S, Syrah; T, Tempranillo; na, not available.
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possibility that these might be terms with a non-univocal
definition. On the contrary, the relatively poor results of the
models built for the descriptors 5, 6, and 8, which are well
defined descriptors and with a high frequency of use, must be
ascribed to the nonexistence of data on aromatic compounds
with more than probable effect in these descriptors, such as
3-hydroxy-4,5-dimethyl-2(5H)-furanone, 4-hydroxy-2,5-di-
methyl-3(2H)-furanone, and the methoxypyrazines. Another
result of undoubted importance derived from the information
on Table 3 is that no model is univariate. The simplest is
integrated by 4 variables, but most models required between 6
and 10 variables. This result is in agreement with the recognized
complexity of the aroma of wine and partly explains the
difficulty of its study.

Models.The data presented inTable 4 confirm this complex-
ity, because the 27 odorants or groups of odorants selected for
the modeling intervened in some of the 9 models shown in the
table. The correlations are positive as well as negative, which
suggests that the perception of an aromatic note is influenced
not only by the presence of a few components whose aroma
form the note, but also by the presence of other odorants that
affect negatively in the perception of such aromatic note. This
is the case of the most important aromatic note of these wines,
the descriptorwood-Vanillin-cinnamon(1). This aromatic note
is due mainly to the three most important aromas of wood, (Z)-
â-methyl-γ-octalactone, vanillin, and 4-allyl-2-methoxyphenol,
but its perception comes limited by the presence of 4-ethylphe-
nol, 4-ethylguaiacol, acetaldehyde, and phenylacetaldehyde. It
should be noted that the contribution of vanilla in this model
cannot be explained attending to the aroma values calculated
in Table 1. The following descriptor in importance is the fruity
term (2) whose model shows some interesting relationships. The
fruity tone depends primarily on the content of the wine in
â-damascenone, which is coherent both with the aroma values
of this component and with its aroma. Nevertheless, in the
model, there is no longer any other component with fruity aroma
that may positively affect the perception of this descriptor. On
the other hand, it is again observed that the perception of this
note comes impeded by the presence of four components. The
same behavior is observed in the case of another two descriptors
related to fruity characteristics, berry-fruit (7) and raisin-flowery
(11). Berry-fruit is a note formed of 2,3-butanodione, methyl
vanillate, andâ-ionone, and its perception seems to be limited
by the same components that are opposed to the fruity
perception. The ethyl esters of the acids 3-methylbutyric,
2-methylbutyric, and 2-methylpropanoic (group 4)â-ionone and
3-hydroxy-2-butanone are responsible for the raisin-flowery
note. In this case, the perception of this note seems to be affected
by the levels of 3-(methylthio)-1-propanol and 2-methoxyphenol,
which are odorants with pungent aroma.

The model built for the descriptortoasted-coffee(4) is the
most complex, and despite being the model that manages to
explain the highest percentage of variance, its interpretation is
not easy. The odorant with the strongest weight in the model is
2-methoxyphenol, which is coherent with its aromatic descrip-
tion. Nevertheless, none of the other odorants with positive
weight in the model possesses notes of this type. This complex-
ity might be due to the absence of quantitative data on
2-furfurylthiol, an odorant whose implication in the coffee notes
of some wines has already been proved (29). A similar situation
is observed in the case of the modelsweet-candy-cacao(13).
Though the predictive capacity of the model is satisfactory, its
excessive complexity might be due to the absence of data on
4-hydroxy-2,5-dimethyl-3(2H)-furanone. Nevertheless, the model

shows that this descriptor is related to aromas of sweet and fruity
tones and comes limited by the presence of 4-ethylphenol,
phenylacetaldehyde, and 3-(methylthio)-1-propanol.

Conversely, the interpretation of the model built for the
descriptoranimal-leather-phenolic(3) turns out to be very easy.
The two components with the strongest weight in the model
are 4-ethylphenol and 4-ethylguaiacol, odorants whose contribu-
tion to these less favorable notes in the quality of a wine has
already been shown (30-32). The negative contribution of
odorants of agreeable aroma such as vanillin orâ-damascenone
is remarkable, and therefore it can be said that the descriptor
animal-leather-phenolichas a structure opposed to that of
descriptors 1 and 2. Similar behavior is observed in the case of
the descriptorold-wood-reduction(9), which is due exclusively
to the presence of phenylacetaldehyde in the wine but whose
intensity comes limited by the presence of odorants related to
fruity notes or to the wood term.

The model obtained for the descriptorVegetal-pepper(10) is
very satisfactory, despite not having available data on meth-
oxypyrazines. These components have not been considered as
potentially important aromas in any of the olfactometries
performed on Spanish aged wines (7, 8), though they have been
reported by other authors as contributors to the vegetal and
pepper notes of Cabernet Sauvignon wines (33). The model
suggests, nevertheless, that the vegetal and pepper character of
the wines in this study is due to the joint action of the ethyl
esters of the isoacids, to the fusel alcohols, and to the isoacids
themselves.
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